Yerington Anaconda Mine Site

Enhanced Evaporation Pilot Test Results DRAFT FOR DISCUSSION

Oct 20, 2015

Meeting outline

- Summary
- Work plan
- Design & construction
- Startup & operations
- Test results
- Full-scale considerations
- Conclusions
- Discussion

Summary

EE pilot was successful in collecting empirical data for design of a full scale system

- Extend the life of the FMS by 10 yr
- No net accumulation of fluids (est 1.5M gal/yr)
- Low maintenance
- Cost effective
- Could be scaled to eliminate all fluids as part of long term remediation of ponds

Work plan

- Objective of pilot was to obtain empirical data for design of a full scale system that would:
 - Extend the life of the FMS by 10 yr
 - No net accumulation of fluids
- Performance criteria
 - Water balance
 - Low maintenance
 - Cost effective
- Changes from the work plan
 - Irrigation approach only (did not test water truck)
 - Moisture sensors were not effective

Construction layout

Bete sprinkler heads

- Stainless steel
- Excellent chemical resistance
- No moving parts
- High evaporative efficiency
- Minimal (no) clogging
- Maintenance free

Senninger heads less efficient

Design & construction

- Layout, survey, level test area
- Sprinkler pressure 30-40 psig, pump outlet 120 to 140 psig
- Pumps
 - Durco (25 hp)
 - New auxilliary (13 hp)
- Piping
 - Existing 4 inch on HLP/liner, and underground
 - New SDR 11 elsewhere, pumps, other connections
 - New manifold/panel (2 in. laterals, 1 in. PVC risers)
 - Pressure test
- Monitoring flow meter and pressure gages
- Moisture sensors were not effective
- In-line filter was key improvement

Overview of pilot test results

- Fluid pumping results (see excel spreadsheet)
 - 4 months, 88 operating days
 - 942,500 gal pumped
 - Ave 10,710 gal/day, 122 gpm
- Potential recirculation
- Total Dissolved Solids (TDS)
- Estimate of Evaporation natural and enhanced
- Water Balance
 - Update by ARC in 2016 FMS O&M report

Evaluation of potential recirculation

2015 Flow and Precipitation Data					2016 Flow and Precipitation Data				
Month Ending	Precip (in)	VLT (gpm)	Slot (gpm)	Ph III (gpm)	Month Ending	Precip (in)	VLT (gpm)	Slot (gpm)	Ph III (gpm)
1/31/2015	0.25	2.95	2.14	3.43	1/31/2016	0.99	3.38	3.62	2.77
2/29/2015	0.25	2.85	2.50	1.96	2/29/2016	0.21	4.32	5.15	4.78
3/31/2015	0.25	3.17	2.39	1.83	3/31/2016	0.17	2.81	2.74	2.47
4/30/2015	0.25	2.57	2.29	2.11	4/30/2016	0.71	3.05	3.32	3.9
5/31/2015	1.73	3.01	5.10	4.40	5/31/2016	1.02	3.42	3.05	4.97
6/30/2015	1.04	3.36	4.00	3.48	6/30/2016	0.00	2.92	2.36	2.23
7/31/2015	0.61	2.82	3.71	3.10	7/30/2016	0.00	3.01	2.27	1.50
8/31/2015	0.26	2.97	3.49	3.19	8/31/2015	0.00	2.32	2.32	2.47
9/30/2015	0.00	2.51	3.02	2.74	9/30/2016	0.00	2.41	1.66	1.90
10/31/2015	0.78	2.47	2.64	4.89	10/31/2016				
11/30/2015	1.29	5.60	5.04	6.51	11/30/2016				
12/31/2015	0.27	4.50	3.32	3.87	12/31/2016		TOTO O ORDERO O DESEASO O DESESSIVIVI MARIONI NA AMAZZATI DELLA NOVO		
Annual total (in)	6.98	3.23	3.30	3.46		3.10	3.07	2.94	3.00

- Weir flow measurements
- Comparison of 2015 & 2016 flows
- VITHIP
- Slot and Ph III HLPs
- Precipitation effects
- Leak detector data

Monthly weir flow data

Summary of weir flow data (see hard copy)

VLT leak detector data

LEAK DETECTOR ID	LOCATION
① VLT D1	DITCH BY WEIR NORTH
②VLT D2	DITCH BY WEIR SOUTH
③ VLT SP	SEDIMENT POND
⊕ VLT P1	VLT POND

- VLTD1, VLTD2, VLTSP have some fluids present
- VLTP1 and VLTD3 always dry
- Over past 2 years:
 - Decreasing trend over time
- No apparent correlation with:
 - Precipitation
 - Fluid transfers
 - EE pilot

VLT leak detector data

Total dissolved solids

- From ARC data (VLT pond)
 - TDS ranges from 150,000 to 300,000 mg/L ("avg." ~225,000)
 - TDS increases with depth
 - Varies with time of year
 - Minor effect on EE pumping pressure and flow rate
- Solids Removal
 - 940,000 gal x 225,000 mg/L
 - 1,765, 000 lbs (884 tons) solids removed
 - Density of solids 127 lb/cu ft (est. from cement copper studies)
 - 104,000 'gal' of solids removed
 - Represents ~ 2.5 inches of solids on top of the HLP over the area of the pilot test
- Further evaluation using future TDS data

Solids on surface of VLT HLP

max

Estimate of evaporation

- Measured rate of fluid application
 - Flow (gpm)
 - Volume over area (gal/ft^2)
 - Convert to inch/day
- Key Variables
 - Precipitation effects no precipitation during pilot test
 - Other weather variables (temp, wind, humidity, etc.)
 - Surface area of pond
 - TDS variations (with depth and location)
 - others

Estimate of evaporation (cont.)

INFLOW

- + Draindown (weir flow)
- + Precipitation (none)

OUTFLOW

- Enhanced Evap
- Natural Evap

Start Vol + Inflow - Enh Evap - Nat Evap = End Vol

preliminary for discussion – final results will be provided in the final report

VLT Pond – elevation vs. volume

Between May 27 & Aug 19, 2016

18

Estimate of evaporation (cont.)

Start Vol + Inflow - Enh Evap - Nat Evap = End Vol

Parameter	Source/Comment	Jun 1 thru	Jun 1 thru Aug 19	
VLT pond start volume (gal)	From pond el/vol curve	1,950,000		
	Measured from weir inflow	315,699		
Inflow (gpm)	Precipitation - none	-		
	Recirculation	-		
Total VLT Fluids	Total VLT fluid, by addition	2,265,699		
VLT pond end volume (gal)	From pond el/vol curve	1,050,000		
Fluid Evaporation	Calculated by difference	1,215,699		
Outflow (anm)	Enhanced evaporation	662,450	54%	
Outflow (gpm)	Nat Evap, calculated by difference	553,249	46%	

From May 27 through Aug 19, prior to transfer from slot to VLT pond

Full-scale considerations

- Design & Operating Criteria
 - Full-scale system to achieve 1.5 2.0 M gal/yr
 - Area = 1.5x to 2x pilot scale (VLT and/or Slot HLP)
 - 15,000 to 20,000 gal/day (0.125 in/day)
 - 180 to 240 gpm
 - 4 mo/yr, 5 day/wk, 1.5 hr/day (80% run time)
- Key issues and mitigation
- Capital and OMM costs

Full-scale system - key issues & mitigation

Issue	Mitigation		
Rate of fluid application (system size)	0.125 in/day, 2x pilot scale		
Clogging of nozzles/sprinklers	Pilot demonstrated clogging not an issue		
Blinding of HLP surface	Beneficial; allows for more surface evap		
Overspray	Shut down during excessive wind		
Precipitate creates dust on HLPs	Verified does not dust (also Pond A)		
Accessibility to top of HLPs	No issue		
Stability of HLPs	Evaluation by SRK ok, no signs of instability		
Operatorship of EE system	SPS operated pilot; potential full-scale TBD		
Potential recirculation	Control fluid application rate; liners present beneath HLPs		
Total dissolved solids (TDS) buildup in ponds	Removal of solids from FMS beneficial; potential EE effects on TDS ongoing, anticipated to be minor		

Full-scale system - estimated costs

- Capital costs = \$100k
 - Grading (\$10k)
 - New main pump (\$25k)
 - New piping/valves (25k)
 - Sprinkler heads (\$5k)
 - Electrical (\$5k)
 - Contingency (\$30k)
- OMM costs (\$150k/yr)
 - 2 FTE operators, 5 months (\$80k/yr)
 - Engineering support (\$25k/yr)
 - Reporting (\$25k/yr)
 - Contingency (\$20k)

Enhanced evaporation - conclusions

- Pilot was successful in collecting empirical data for design of a full scale system:
 - Extend the life of the FMS by 10 yr
 - No net accumulation of fluids (est 1.5M gal/yr)
 - Low maintenance
 - Cost effective
 - Could be scaled to eliminate all fluids as part of long term remediation of ponds
- Additional considerations
 - NPL site remediation (EPA & ARC)
 - Alternative site remediation (NDEP & ARC)
 - Ongoing mineral exploration & development (SPS)

